Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure and strain state of polar and semipolar InGaN quantum dots

Identifieur interne : 001492 ( Main/Repository ); précédent : 001491; suivant : 001493

Structure and strain state of polar and semipolar InGaN quantum dots

Auteurs : RBID : Pascal:13-0081524

Descripteurs français

English descriptors

Abstract

The nanoscale structural properties of ultrathin (2nm high) self-assembled (0001) polar and (1122) semipolar InGaN/GaN quantum dot (QD) superlattices, grown by plasma-assisted molecular beam epitaxy, were investigated using transmission electron microscopy (TEM) techniques. Samples grown under two sets of temperature ranges were compared. The higher-temperature uncapped polar QDs were well-defined and exhibited a truncated pyramidal morphology. Similar morphology was observed for the embedded QDs, albeit faintly diffused. On the other hand, the polar superlattices grown at lower tem- peratures were heavily distorted due to a large stacking fault density. Semipolar QDs exhibited lenticular morphology. The QD superlattices were found to be elastically strained using geometrical phase analysis, and their strain state was well-described by a biaxial approximation. The extrapolated indium content was consistent with reduced indium incorporation efficiency for the semipolar case compared with the polar one.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0081524

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structure and strain state of polar and semipolar InGaN quantum dots</title>
<author>
<name sortKey="Koukoula, T" uniqKey="Koukoula T">T. Koukoula</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>GR 541 24 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lotsari, A" uniqKey="Lotsari A">A. Lotsari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>GR 541 24 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kehagias, Th" uniqKey="Kehagias T">Th. Kehagias</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>GR 541 24 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dimitrakopulos, G P" uniqKey="Dimitrakopulos G">G. P Dimitrakopulos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>GR 541 24 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="H Usler, I" uniqKey="H Usler I">I. H Usler</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut für Physik, Humboldt-Universität zu Berlin, AG Kristallographie, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Das, A" uniqKey="Das A">A. Das</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CEA-CNRS Group "NanoPhysique et SemiConducteurs," INAC/SP2M/NPSC, CEA-Grenoble, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38054 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="région" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monroy, E" uniqKey="Monroy E">E. Monroy</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>CEA-CNRS Group "NanoPhysique et SemiConducteurs," INAC/SP2M/NPSC, CEA-Grenoble, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Karakostas, Th" uniqKey="Karakostas T">Th. Karakostas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>GR 541 24 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Komninou, Ph" uniqKey="Komninou P">Ph. Komninou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>GR 541 24 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0081524</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0081524 INIST</idno>
<idno type="RBID">Pascal:13-0081524</idno>
<idno type="wicri:Area/Main/Corpus">001278</idno>
<idno type="wicri:Area/Main/Repository">001492</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Film growth</term>
<term>Gallium nitride</term>
<term>Indium</term>
<term>Indium nitride</term>
<term>Inorganic compounds</term>
<term>Molecular beam epitaxy</term>
<term>Phase analysis</term>
<term>Quantum dots</term>
<term>Self-assembly</term>
<term>Semiconductor materials</term>
<term>Stacking faults</term>
<term>Strains</term>
<term>Superlattices</term>
<term>Temperature dependence</term>
<term>Ternary compounds</term>
<term>Transmission electron microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Déformation mécanique</term>
<term>Composé minéral</term>
<term>Composé ternaire</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Semiconducteur</term>
<term>Point quantique</term>
<term>Autoassemblage</term>
<term>Superréseau</term>
<term>Croissance film</term>
<term>Epitaxie jet moléculaire</term>
<term>Microscopie électronique transmission</term>
<term>Dépendance température</term>
<term>Défaut empilement</term>
<term>Analyse phase</term>
<term>Indium</term>
<term>6865H</term>
<term>8107T</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The nanoscale structural properties of ultrathin (2nm high) self-assembled (0001) polar and (1122) semipolar InGaN/GaN quantum dot (QD) superlattices, grown by plasma-assisted molecular beam epitaxy, were investigated using transmission electron microscopy (TEM) techniques. Samples grown under two sets of temperature ranges were compared. The higher-temperature uncapped polar QDs were well-defined and exhibited a truncated pyramidal morphology. Similar morphology was observed for the embedded QDs, albeit faintly diffused. On the other hand, the polar superlattices grown at lower tem- peratures were heavily distorted due to a large stacking fault density. Semipolar QDs exhibited lenticular morphology. The QD superlattices were found to be elastically strained using geometrical phase analysis, and their strain state was well-described by a biaxial approximation. The extrapolated indium content was consistent with reduced indium incorporation efficiency for the semipolar case compared with the polar one.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>260</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structure and strain state of polar and semipolar InGaN quantum dots</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>EMRS 2011 Fall meeting symposium on Stress, structure and stoichiometry effects on nanomaterials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KOUKOULA (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LOTSARI (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KEHAGIAS (Th.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DIMITRAKOPULOS (G. P)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HÄUSLER (I.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DAS (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MONROY (E.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KARAKOSTAS (Th.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KOMNINOU (Ph.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CRACIUM (Valentin)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GABORIAUD (Rolly)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SANCHEZ (Florencio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SCHROEDER (Thomas)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics, Aristotle University of Thessaloniki</s1>
<s2>GR 541 24 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut für Physik, Humboldt-Universität zu Berlin, AG Kristallographie, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>CEA-CNRS Group "NanoPhysique et SemiConducteurs," INAC/SP2M/NPSC, CEA-Grenoble, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laser Department, National Institute for Laser, Plasma and Radiation Physics</s1>
<s2>Magurele</s2>
<s3>ROU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Materials Science and Engineering, University of Florida</s1>
<s2>Gainesville</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Institut Pprime, CNRS, University of Poitiers, ENSMA SP2MI</s1>
<s2>86962 Chasseneuil, Futuroscope</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB</s1>
<s2>08193 Bellaterra</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>IHP Microelectronics/Materials Research, Im Technologiepark 25</s1>
<s2>Frankfurt/Oder</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (EMRS)</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>7-12</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000502061850020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0081524</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The nanoscale structural properties of ultrathin (2nm high) self-assembled (0001) polar and (1122) semipolar InGaN/GaN quantum dot (QD) superlattices, grown by plasma-assisted molecular beam epitaxy, were investigated using transmission electron microscopy (TEM) techniques. Samples grown under two sets of temperature ranges were compared. The higher-temperature uncapped polar QDs were well-defined and exhibited a truncated pyramidal morphology. Similar morphology was observed for the embedded QDs, albeit faintly diffused. On the other hand, the polar superlattices grown at lower tem- peratures were heavily distorted due to a large stacking fault density. Semipolar QDs exhibited lenticular morphology. The QD superlattices were found to be elastically strained using geometrical phase analysis, and their strain state was well-described by a biaxial approximation. The extrapolated indium content was consistent with reduced indium incorporation efficiency for the semipolar case compared with the polar one.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Strains</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Croissance film</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Film growth</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Défaut empilement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Stacking faults</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Analyse phase</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Phase analysis</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Análisis fase</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>6865H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>8107T</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fN21>
<s1>049</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Stress, structure, and stoichiometry effects on the properties of nanomaterials Symposium</s1>
<s3>Warsaw POL</s3>
<s4>2011-09-19</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001492 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001492 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0081524
   |texte=   Structure and strain state of polar and semipolar InGaN quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024